Gomory cuts revisited

نویسندگان

  • Egon Balas
  • Sebastián Ceria
  • Gérard Cornuéjols
  • N. Natraj
چکیده

In this paper, we investigate the use of Gomory's mixed integer cuts within a branch-and-cut framework. It has been argued in the literature that \a marriage of classical cutting planes and tree search is out of the question as far as the solution of large-scale combinatorial optimization problems is concerned" 16] because the cuts generated at one node of the search tree need not be valid at other nodes. We show in this paper that it is possible, using a simple lifting procedure, to make Gomory cuts generated in a node of the enumeration tree globally valid in the case of mixed 0-1 programs. Other issues addressed in this paper are of computational nature, such as strategies for generating the cutting planes, deciding between branching and cutting, etc. The result is a robust mixed integer program solver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strengthening Chvátal-Gomory cuts and Gomory fractional cuts

Chvátal-Gomory and Gomory fractional cuts are well-known cutting planes for pure integer programming problems. Various methods for strengthening them are known, for example based on subadditive functions or disjunctive techniques. We present a new and surprisingly simple strengthening procedure, discuss its properties, and present some computational results.

متن کامل

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point

Gomory-Chvátal cuts are prominent in integer programming. The Gomory-Chvátal closure of a polyhedron is the intersection of all half spaces defined by its Gomory-Chvátal cuts. In this paper, we show that it is NP-complete to decide whether the Gomory-Chvátal closure of a rational polyhedron is empty, even when this polyhedron contains no integer point. This implies that the problem of deciding ...

متن کامل

Strengthening Gomory Mixed-Integer Cuts: A Computational Study

Gomory mixed-integer cuts are an important ingredient in state-ofthe-art software for solving mixed-integer linear programs. In particular, much attention has been paid to the strengthening of these cuts. In this paper, we give an overview of existing approaches for improving the performance of Gomory mixed-integer cuts. More precisely, we consider k-cuts, combined Gomory mixed-integer cuts, re...

متن کامل

Cutting Planes for Mixed Integer Programming

The purpose of this paper is to present an overview of families of cutting planes for mixed integer programming problems. We examine the families of disjunctive inequalities, split cuts, mixed integer rounding inequalities, mixed integer Gomory cuts, intersection cuts, lift-and-project cuts, and reduceand-split cuts. In practice, mixed integer Gomory cuts are very useful in obtaining solutions ...

متن کامل

The Ongoing Story of Gomory Cuts

The story of Gomory cuts is characterized by swings between great acclaim in the early days, near oblivion for decades and an amazing come back in the last 20 years. These cuts have been described as “elegant”, “disappointing” and “the clear winner” at various times over the last 55 years. This essay retraces that roller coaster. Ralph Gomory’s paper “Early Integer Programming” recounts his dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1996